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This article is about a different representation of  the geometry of  the gravitational 
field, one in which the paths of  test bodies play a crucial role. The primary 
concept is the geometry of  the motion of a test body, and the relation between 
different such possible motions. Space-time as a Lorentzian manifold is regarded 
as a secondary construct, and it is shown how to construct it from the primary 
data. Some technical problems remain. Yang-Mills fields are defined by their 
holonomy in an analogous construction. I detail the development of this idea in 
the literature, and give a new version of  the construction of  a bundle and connec- 
tion from holonorny data. The field equations of  general relativity are discussed 
briefly in this context. 

PROLOGUE 

The following text was written in 1985, forming the author's Ph.D. 
thesis. In preparing it for publication I have edited and amended it in a 
number of places, particularly updating the citations of work which has 
appeared since 1985, or has been brought to my attention since then. But I 
have tried to keep to my original intentions regarding the particular point 
of view about fundamental physics which I tried to express in 1985. 

The work in Section 2, on Yang-Mills fields (connections), has been 
developed in innumerable ways over the years from Dirac onward, with 
many of the developers working separately, it seems, particularly those in 
the physics community. The introduction provides a guide to the literature 
which I know about on this subject--but is surely not complete, and I expect 
that more of this fragmented literature will come to light as the years pass. 
The material in Section 2 provides the necessary synthesis for the two sec- 
tions which follow. 
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In Sections 3 and 4 1 apply the same philosophy and method to gravi- 
tational fields (Riemannian metrics), following the physical reasoning I out- 
line in the Introduction. This departure appeared to be novel at the time, 
and still does. There are some loose parallels with the physical motivation 
of the twistor program in general relativity, as regards recasting the gravi- 
tational field in terms of the incidence of lines. Still looser is any similarity 
to string theories, where lines and loops wander on manifolds. If there is a 
connection at any technical level, it remains to be made. 

I paid attention to the intuitive physical ideas (and the Yang-Mills 
analogy), sacrificing the ability to calculate and, probably, the mathematical 
precision and comprehensiveness which would allow the theory to develop 
further. However, from the point of view of theoretical physics, the next 
input must be quantum theory, and in quantum theory points and lines on 
manifolds as physical objects cannot be defended. Thus, I do not believe 
that a tighter mathematical formulation of the ideas I present here will 
become a part of fundamental physics in a direct way. Rather, my hope 
is that the ideas will suggest a physical reformulation, involving perhaps 
discreteness or quantum theory, or both. 

Terms Assumed Throughout. Suppose B and C are two topological 
spaces, and M a differentiable manifold with a singled-out basepoint .. Then 
I use the following notation. 

Map(B, C) 
I 
TM 
TxM 
M I 

P M  

~ M  
-1 

P 
o 

denotes the set of continuous maps B ~  C 
the unit interval [0, 1] 
the tangent bundle of M 
the tangent space at x 
the unpointed path space: the set of piecewise smooth maps 
I ~ M  
the pointed path space: the subset of M * with p(O) =. ,  p ~PM; 
note that, in places indicated, when E is a bundle over M, PE 
means the space of paths with p(0) anywhere in the fiber 
o v e r  * 

the loop space: the subset of P M  with p ( l ) =  * 
for p ~ M  x, p-1 is the reverse path: p- l ( i )  =p(1 - i) 
denotes the composition of paths: for P2, P~ ~ M x with Pl (1) = 
p 2 ( 0 ) ,  P2 o p !  is the path 

�9 ~ p , ( 2 i )  i _<1 /2  

l ~ p 2 ( 2 i -  1) i>1/2  
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the tilde convent ion:  for any m a p  ~: A ~ M a p ( I ,  B), the same 
symbol  ~, wi thout  the tilde represents the associated map  

~;  A x I ~ B  

(u, i) --* ~t(u)[i] 

the end-of -p roof  symbol 

1. I N T R O D U C T I O N  

The idea o f  "gravi tat ional  field" is more  or  less accepted as the basic 
not ion  o f  Einstein's general relativity. One imagines, in the absence o f  
matter,  a space-time manifold obeying the vacuum Einstein equations. 
Observers, or  test particles, m a y  venture into parts o f  this manifold  to make 
such measurements  as they please, and, so long as their mass is negligibly 
small, they may  do so without  disturbing the gravitational field. The field 
has an existence as a physical quant i ty  independent  o f  the test particles, 
whose proper  lengths the field purports  to indicate. 

The mathematics  o f  gravitat ion has changed very little since Einstein's 
original foundat ion  o f  general re la t iv i ty--one might  ment ion the later intro- 
duct ion o f  spin dens i ty - -bu t  the concept ion o f  the gravitational field has 
altered significantly, if we can judge f rom Einstein's book  on relativity theory 
(Einstein, 1922) : 

For the concept of space the following seems essential. We can form new bodies 
by bringing bodies B, C,. . .  up to body A; we say that we continue body A. We 
can continue body A in such a way that it comes into contact with any other 
body, X. The ensemble of all continuations of body A we can designate as the 
"space of the body A". Then it is true that all bodies are in the "space of the 
(arbitrarily chosen) body A". In this sense we cannot speak of space in the 
abstract, but only of the "space belonging to a body A". The Earth's crust plays 
such a dominant role in our daily life in judging the relative positions of bodies 
that it has led to an abstract conception of space which cannot be defended. In 
order to free ourselves from this fatal error we shall speak only of "bodies of 
reference" or "space of reference". It was only through the theory of general 
relativity that the refinement of these concepts became necessary, as we shall see 
later... [Einstein (1922, p. 2)] 

In this passage, Einstein is against the not ion o f  an abstract  space or  space- 
time having an existence independent o f  the measuring bodies. In  other  
places, it is true, he did support  the analogy between the electromagnetic 
field and the gravitational field, an analogy which probably  did most  to 
establish the now-accepted not ion o f  the gravitational field. However,  a bit 
o f  selective quota t ion  serves to make this part icular  point. 
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Quantum gravity has very much taken its cue from the conventional 
field point of view. One considers the space of all metrics on a given manifold 
and tries to form a statistical, probabilistic, theory on this space, which 
satisfies the conventional ideals of a quantum theory. In other words, the 
attempted theory purports to deal only with the pure field, and does not 
consider as part of its scope the measuring bodies which Einstein considered 
to be basic to his conception of "space." We know now that this conception 
of quantum gravity has all sorts of objectional features (which, of course, 
may be due to other aspects of the theory) (see, e.g., Isham, 1981). One of 
the unpleasant aspects is the necessity of considering the diffeomorphism 
symmetry of the configuration space. This arises because quantum field 
theory is based on the local vector space structure of the configuration 
space (Isham, 1984), and so is based on the space of all metrics. However, 
diffeomorphism-related metrics are considered to describe the same physical 
object, and so one is forced to "factor through" the diffeomorphism sym- 
metry. Now this symmetry is an essentially unphysical one, and arises 
because the space of all metrics is really the wrong concept, it does not have 
a one-to-one correspondence with real physical quantities. What one should 
really work with are the set of distinct geometries. The diffeomorphism 
symmetry is a symmetry of a representation, via a particular differentiable 
manifold. 

This article is about a different representation of the geometry of the 
gravitational field, one in which the test bodies play a crucial role. It is an 
analysis of what the relationships between the measured quantities of the 
motion of the test bodies are. It describes the effect of the geometry of space- 
time on the geometries of the test-particle motions. The key idea is suggested 
by the quote of Einstein above: a point on a manifold is defined as the set 
of all particles which arrive "there." In other words, we have to say what a 
particle path is, and what it means for particle paths to be "in coincidence." 

Particle paths shall be defined so that they all start at the same place. 
A particle path is defined by its geometry--the specification of the angles 
through which the particle bends, in which directions, and at what proper 
distances along the path. In other words, the intrinsic geometry (proper 
distances along the path) and extrinsic geometry (parallel transport of vec- 
tors along the path) are specified. 

The information in the gravitational field is involved in grouping to- 
gether, in a particular way which will be described more fully below, all the 
possible particle paths into sets which represent the particles whose paths 
are "in coincidence." These sets form the points of the space-time manifold. 
This is actually all that is required! What one finds is that the geometry of 
the particle paths is sufficient to specify the geometry of the resulting space- 
time. The result is a theory of gravity in which the test particles are firmly 
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mixed up with the phenomenon of the field itself. In fact, the field is "made 
out of"  the motions of the test bodies. There is no conception of an inde- 
pendent gravitational field divorced from the theory of the propagation of 
matter. 

So the presence of gravity is felt by the fact that it alters the sets of 
coincident particle motions. The coincidence is specified by an equivalence 
relation on the set of all possible particle geometries. I have termed the 
information that goes into this equivalence relation the "holonomy" of the 
gravitational field, the word holonomy being using in rather a loose sense. 
The point is that two particle paths end at the same point if they form a 
closed loop on the space-time manifold, which starts and ends at their mutual 
starting points. So to specify the equivalence relation one needs to know the 
geometry of the particles which move in closed loops only, and in addition 
the Lorentz group holonomy element (in the strict sense of the word holono 
omy) of the closed loop. This is the way in which the gravitational "field" 
is specified. The mathematical details of this are best left to the following 
sections. 

So, with the motivation the analysis of gravity, why is a large section 
of the article about classical Yang-Mills fields? The reason is that Yang- 
Mills theory is very similar to general relativity, but, as is usually the case, 
it is a simpler theory. The Yang-Mills result (the representation theorem of 
Section 2) both provides a comparison with general relativity, and also a 
technical result which is of use in building the linear connection of the 
gravitational field. Moreover, the technical tools used on the way in Section 
2 bear a strong resemblance to, and in fact motivate, the techniques of 
Section 3. 

Table I contains a comparison of the main features of Yang-Mills 
theory in Section 2 and gravity in Section 3; the notation has been deliber- 
ately chosen to enhance the similarity. 

The strong resemblances displayed in the comparison throw fresh light 
on the debate about the status of gravity as a gauge theory. From the point 
of view of holonomy, gravity has no diffeomorphism symmetry: one just 
specifies the set P and the map h. The "gauge freedom" of gravity is still 
present, however, in a rather subtle form. The set P (see Section 3) contains 
the geometries of the paths which form closed loops. Suppose, for the sake 
of argument, that the paths are composed of n linear sections (straight lines). 
Then, to specify an element of P (and hence give information about the 
gravitational field) one can arbitrarily specify the first n -  1 pieces. Then the 
geometry of the last section of the path is entirely fixed by the requirement 
that it be in P. We can say that the gauge freedom of gravity is the freedom 
to specify the first n - 1 sections at will, and the real information (the "holon- 
omy") is the fixed value of the geometry of the last section. This notion of 
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Table I 

Construct YM Gr 

G Structure group Lorentz group 
M Base space Tangent space 
Geometry of loops f~M P 
Holonomy mapping H: ~ M  ~ G  h: P - ~ G  

Equivalence p(1) =p'(1), There exists 7r~P: 
relation on P M  x G, g' = H ( p  - ~ o p ' )g  zr= ( H(  ~r)p- ~) o p', 

(p, g) ~(p', g') g' = h(zc)g 
Constructed set P M  x G / ~  Bundle Manifold and frame bundle 
Lifting Lifting function l. Inverse development 

map A, lifting in 
frame bundle 

whose smoothness gives Charts on the bundle Charts on the manifold 
and which def ines  Connection Metric and connection 

gauge freedom is of  a different character from the rather empty notion 
of  "diffeomorphism symmetry." It clearly relates to choices made by the 
experimenter about the information which is to be gathered. Thus, it is a 
symmetry with an explicit physical significance. This interpretation of the 
"gauge freedom" of  gravity is only possible if one has in mind the physical 
identification of the paths of the holonomy description (which might be 
regarded as mere mathematical artifacts) with particle path geometries. 

The last section is concerned with the field equations of  gravity, which 
have so far not been introduced. The equations are presented in a form which 
relates the (infinitesimal) holonomy of the field to the matter momentum and 
angular momentum. The details are best left to that section. It suffices to 
remark here that by taking a very specific point of view on the construction 
of the gravitational field, as is described in this paper, one gets a very specific 
point of view about the field equations: the metric-compatible aspect of the 
connection is a matter of  definition, but the torsion-flee aspect is a field 
equation, with the same status as the Einstein field equation. In fact, the 
torsion equation is naturally paired with the Einstein equation: it is part of 
the "angular momentum" field equation, the Einstein equation being the 
"linear momentum" field equation. 

2. T H E  H O L O N O M Y  REPRESENTATION OF GAUGE FIELDS 

2.1. Introduction 

Classical Yang-Mills fields are usually described by potentials, or con- 
nections on a principal fiber bundle. A physical field configuration is really 
a set of  potentials related by gauge transformations, so that in other words 
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the configuration space is the space of orbits of the action of the gauge group 
f9 in the space d of all connections on some given bundle. This orbit space 
has been much studied" because one can view Yang-Mills quantum field 
theory as a theory of integration on the orbit space, albeit in an imprecise 
fashion (Atiyah, 1980; Singer, 1981; Babelon and Viallet, 1981). There is 
also a canonical version, where geodesics on orbit space correspond to the 
Hamiltonian flow (see also Narasimhan and Ramadas, 1979). 

For good physical reasons, then, one would like to have more infor- 
mation about the configuration space d/fg. To achieve a different charac- 
terization of the configuration space, it is possible to consider the holonomy 
mapping of the connection as the fundamental object. This mapping takes 
the loop space f~M of the base manifold M into the structure group G of 
the bundle by mapping a loop into its holonomy element. The loop space is 
the set of all piecewise smooth paths in M which start and end at an arbi- 
trarily singled-out point, denoted . ,  in M, with a topology which will be 
discussed later. The holonomy element of a loop is defined in terms of the 
horizontal lifting of the loop into the total space of the bundle. The two 
endpoints of the lifting define a G-element which translates one of the end- 
points to the other, using the G-action on the bundle. This is the holonomy 
element. Section 2.2 describes how a connection gives rise to the concepts 
of horizontal lifting and holonomy, and why the machinery of bundles is 
the most appropriate. 

Discussion of the holonomy in electromagnetism goes back to Dirac 
(1931) in the context of magnetic monopoles. Aharonov and Bohm (1959) 
discussed parallel transport as a phase shift of a Schr6dinger wavefunction, 
and recognized the physical significance of the holonomy operator for a 
closed loop, being more directly involved in the behavior of the Schr6dinger 
wavefunction than magnetic forces. Some of these ideas were used in an 
attempt to find gauge-invariant quantizations of electromagnetic and other 
gauge fields (Mandelstam 1962a,b, 1968a,b; Bialynicki-Birula, 1963). 

There are two important facts about the holonomy mapping. First, 
different physical configurations give rise to different holonomy mappings, 
and second, the set of restricted gauge transformations fg. c fg, that is, ones 
which act trivially at the basepoint, leave the holonomy mapping invariant. 
This means that, if we consider gauge equivalence to be restricted in this 
way, the physical configurations are faithfully and uniquely represented by 
their holonomy mappings. The residual gauge freedom of field rotations at 
the basepoint is parametrized by G ~ fg/fg., a finite-dimensional Lie group, 
in contrast to the original infinite-dimensional gauge group f#. Thus, the 
restricted, or pointed, configuration space d/fg.  is equivalent to a set of 
certain types of mappings OM~G, namely those which arise as holonomy 
mappings. 
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The results demonstrated in this section show that there is a simple 
set of conditions H1-H3, given below, defining the relevant subset 
j g  c Map(f~M, G) and a simple reconstruction of both the principal bundle 
over M and the connection on it. 

This works equally well for any principal G-bundle over M, so that it 
is more natural to consider as the configuration space the disjoint union over 
inequivalent bundles of the orbit spaces for each bundle. This can be much 
more elegantly stated as the set ~ ,  of  triples (B, F, b), where B is any princi- 
pal G-bundle, F a connection on it, and b a point in the fiber over the 
basepoin t . ,  with equivalence 

(g,  r ,  b) ~ (B', r ' ,  b') 

if there is a bundle isomorphism B~B' taking F to F' and b to b', and such 
that it is the identity on M. This definition is more useful here, since the 
holonomy mapping involves only the base manifold M in its definition, the 
reconstruction process manufactures "new" bundles as well as connections. 
Note that since a preferred point in the fiber over �9 is preserved, these 
triples are equivalent to orbits of the restricted gauge group in the space of 
potentials. To be precise, if C is a particular bundle with basepoint c, and 
~ -c~  ~- is defined as the subset of triples (B, F, b) where B is isomorphic 
to C, and d and f#, are the potentials and restricted gauge group of (C, c), 
then ~ .c is in bijective correspondence with d / f # . ,  in the obvious way. 

The two main results are as follows. 

Reconstruction Theorem. Suppose M is a connected manifold with base- 
point , ,  and H: f~M~G satisfies conditions H I - H 3  below; then there exists 
a differentiable principal fiber bundle B=(E, zr, M, G), a point beTr-l(*) 
and a connection F on B such that H is the holonomy mapping of (B, F, b). 

Representation Theorem. If  M is a connected, Hausdorff manifold, the 
correspondence of the reconstruction theorem between the Yang-Mills con- 
figuration space ~ ,  defined as the set of triples (B, F, b) as above, and the 
set of holonomy maps ~r G), defined by the conditions H1- 
H3, is a bijection. 

Results of this nature can be proved in a variety of settings, for example, 
for differentiable or topological bundles. The infinitesimal connection (as 
described above) might be replaced by some more general gadget, e.g., a 
lifting function. In the literature, generalizations of infinitesimal connections 
are rather vaguely called "connections." 

The first mention of a result such as the reconstruction theorem occurs 
in Kobayashi (1954) in a short note without proofs. The setting is rather 
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similar to the one used here, differentiable bundles and infinitesimal connec- 
tions, but Kobayashi's axioms do not seem to include any mention of differ- 
entiability (see H3 below). The reconstruction theorem appears in a more 
general guise in papers on bundle topology which appeared shortly after- 
ward. Milnor (1956) considered locally trivial bundles ("fiber" bundles) over 
a simplicial complex, with a bundle slicing function playing the role of a 
connection. Milnor's analogue of H2 is particularly elegant. The construc- 
tions are all topological, rather than differentiable. 

The most general setting is that of Lashof (1956), who considered topo- 
logical principal bundles (not even necessarily locally trivial) with a general 
lifting function playing the role of the connection. The lifting function is 
much more general than an infinitesimal connection because the lifting may 
not commute with the structure group action. This is also connected with 
the fact that in this formulation, paths which differ only by reparametriza- 
tions and other similar operations (cf. H2) are not considered to be equiva- 
lent. Lashof has a notion of equivalence of maps ~ M ~ G  which renders the 
equivalence classes in a bijective correspondence with the set of inequivalent 
G-bundles over M. This is thus a coarse version of the representation 
theorem, which does not distinguish between different connections on the 
same bundle. Interestingly, Lashof's constructions are rather close to the 
gravitational constructions presented here. 

The differential aspect of the subject was explored by Teleman 
(1960, 1963) shortly afterward. He later wrote two papers which are 
probably the most comprehensive overview of all of these sorts of results. 
In the first (Teleman, 1969a), the reconstruction theorem appears (Theo- 
rem 3) in a general guise, a connection being a lifting function which 
satisfies analogues of H1 and H2. Various special cases (simplicial, differ- 
ential, complex analytic) are discussed in the second paper (Teleman, 
1969b). 

The constructions were later rediscovered by physicists (Giles, 1981; 
Anandan, 1983; Barrett, 1985, 1989; Fischer, 1986). For the most part, they 
confined themselves to the algebraic part of the constructions rather than 
the topological aspect. Chan and Tsou (1986) and Chan et al. (1986) found 
an interesting extension of the reconstruction to presenting the data in the 
form of a connection on loop space f~M, with applications to monopoles._ 
The last paper also contains references to many other associated papers in 
the physics literature. It is interesting to note that Dirac's (1931) paper on 
monopoles discussed a homomorphism f~M~ U1, with M three-dimensional 
Euclidean space minus a point, which by the reconstruction theorem immedi- 
ately translates into a connection on a bundle, the modern understanding of 
monopoles. The inequivalent bundles correspond to the different monopole 
charges which Dirac found. 
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Many physicists were interested in the character of the homomorphism 
~ M ~ G  in the case that G acts on a vector space, which goes under 
the name "Wilson loop" in the physics literature (Wilson, 1974). See, 
e.g., Durhuus (1980) for a lattice version of a result which goes back to 
Teleman (1969a, Theorem 5) at least. Polyakov (1979) discusses some of 
the uses of Wilson loops in quantum field theory; it is a subject that was 
taken up by many other authors. 

2.1.1. Conditions H1-H3 

The first condition on a holonomy map H is straightforward: 

H1. H is a homomorphism of the composition law of loops 

n(co2 o o)1) = n ( c o l ) H ( ~ )  

H1 is consistent with the holonomy element being defined as the G- 
element which translates the point b to its image point under parallel trans- 
port backward around the loop. This will be taken as the definition of the 
holonomy element. To be more explicit, if co' is a horizontal lift of co with 
co'(1) = b, then bH(co) = (0'(0) (Kobayashi and Nomizu, 1963). 

The second condition axiomatizes several related features of H. H takes 
the same value on loops which differ by a reparametrization, or by the 
addition or removal of path sections which "double back" on themselves. 
This is formalized by the definition of thin loops: 0 is a thin loop if there 
exists a homotopy of 0 to the trivial loop, with the image of the homotopy 
lying entirely within the image of 0. This makes precise the notion that a 
thin loop in M does not enclose any area of M. 

H2. H takes the same value on thinly equivalent loops: col ~ a h  if 
o91 o coy1 is thin. 

The path co-1 is the reverse path of co: co-l(i)= c0(1- i). 
This property, together with HI ,  implies that H(co-1) = H-l(co). In fact 

we can consider the whole H-group structure of f~M (Spanier, 1966), and 
since the homotopies which make loop composition homotopy-associative 
and homotopy-invertible are actually thin homotopies describing thin 
equivalences, ~qM factored by thin equivalence is a group, and H defines a 
homomorphism of groups. This is explained further in Section 2.3. We can 
think of thin equivalence as a restricted notion of homotopy equivalence, 
intuitively similar to homotopy theory on a very fine mesh or sieve. The 
holes of the mesh stop the homotopies sweeping out across areas of M. 



Holonomy and Path Structures in GR and YM Theory 1181 

H1 and H2 are all the algebraic properties required of H. It remains to 
formulate a notion of smoothness for the holonomy mapping for axiom H3. 
One should not arbitrarily impose conditions of continuity and differ- 
entiability for purely technical reasons, but in an ideal world, these things 
should relate to questions of physical importance, about the way in which 
the measurements that the field represents are made. This point was made 
to me by Chris Isham. In Yang-Mills theory this is a little difficult to inter- 
pret, since except for the case of electromagnetism, one does not measure 
the classical field directly, it just appears as a construct in the quantum field 
theory. Nevertheless, the question is certainly important for classical gravity 
and electromagnetism. 

Any classical field configuration represents an infinite amount of infor- 
mation, and since one can only ever measure a finite set of  values, it is an 
idealization of the true situation. Any continuum of quantities represents a 
sequence (in the mathematical sense of a countable set in an order labeled 
by the integers) of  measurements performed to greater accuracy as the 
number of measurements increases. Perhaps it would be more accurate to 
say that the field configuration represents a measurement algorithm, rather 
than any set of  measurements themselves. Now in any theory envisaging an 
infinite set of possible outcomes this set should at least be a topological 
space, so that one can meaningfully discuss the convergence of  a set of 
approximations representing the process of measurement. Clearly, the topol- 
ogy involved should relate closely to the way in which the theory envisages 
the measurements being made. Conventionally, when discussing theories 
involving an infinite amount  of information, such as a classical field theory, 
there seem to be two distinct possible "sources" of the infinity. On one hand, 
there may be an infinite amount of  information contained in a given field 
configuration, and on the other, there may be an infinite range of  possibilities 
for that field configuration. So for a field theory, say involving real-valued 
functions on space-time, one needs both a topology on space-time to define 
a field as a continuous function, and a topology on the configuration space 
to determine which field configurations neighbor each other. Clearly, when 
one relates these topologies to the measurement process, one can see that 
they should be intimately related to each other. Similar sorts of remarks 
apply to the smooth structures of  these spaces. 

The most immediate problem is to find the structure on f~M which 
makes holonomy mappings continuous, at least, and hopefully differentiable. 
Since much of  the theory has a strong algebraic topological flavor to it, the 
first thing to try, and in fact discard, is the compact-open topology. The 
problem with this is simple: holonomy mappings are not in general continu- 
ous with this topology. A simple example will serve to demonstrate this. Let 
space-time be R 2 and consider an electromagnetic field on it with constant 
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field strength F. For any closed loop the holonomy element is 

H(co) = exp f v  iF dx I A dx 2 

where V is the volume bounded by co. Consider the family of loops 
~t: I~ f~R 2 given by 

~f(s)t(1 - t) exp(it/s), s r 0 
Vt( s, t) 

(0, s = 0  

where R 2 has been identified with the complex numbers. The parameter t is 
the time along the path, and s is the family parameter. If  f is a continuous 
real function with f ( 0 ) =  0, then ~t is continuous, and so fit is continuous in 
the compact-open topology. The family describes a continuous set of loops 
which, as s~0 ,  simultaneously wind around faster and faster, and shrink to 
zero radius. The area integral is easily computed, putting r ( t )=f ( s ) t (1 -  t) 
and O(t)= t/s, then the area enclosed by loop s is 

f If2(s)/6Os, s ~ 0 
It2 dO = ~0, s = 0 

Clearly, the choice f (s )  = s ~/2 renders the holonomy Hqt: I ~  U1 a discontinu- 
ous function. The consequence of this is that although many of the construc- 
tions to be used further on are very strongly linked with algebraic topology, 
the standard topology used in algebraic topology is not relevant. On a 
technical level, the reason is that essentially the parallel transport operator 
is the solution of an ordinary differential equation, and so it is important 
that the topology controls the derivatives of the paths. In the above example, 
the derivative of  ~t is not continuous at s = 0. On a physical level, this failure 
stems from the fact that there were no good physical reasons for supposing 
that the compact-open topology is relevant. 

To return to the physical motivation, what is needed is a topology on 
f~M which relates more closely to the physics of the measurements. The 
physics is based on entirely classical (nonquantum) ideas. Suppose we just 
limit attention to the subspace of loops which are piecewise linear, i.e., 
composed of a finite number of straight-line segments. Then if space-time is 
again R 4, and we consider the loops with n + 1 sections, these can be parame- 
trized b the positions of the "corners," i.e., (~4)n. Thus, measuring the shape 
of the loop is reduced to measuring a finite number of particle positions, 
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and this is exactly where the topology and differentiable structure of  space- 
time come into use. 2 Thus, we want to postulate that the holonomy is a 
smooth map (~4)n~G. So, to consider the space of  piecewise linear loops, 
the smoothness requirement is: 

For  any integer n > 0, if V: (~4) n--*~2M is the family of  piecewise linear 
loops with n + 1 linear pieces, then the composite map HVt: ~ 4 ~ M ~ G  is 
a smooth map. 

It would be quite possible, and physically well motivated, to work with 
the space of piecewise linear loops. However, the linear structure of  the base 
space (here R 4) is not really relevant, and we want the results to hold equally 
well on any differentiable manifold. It is also technically rather inconvenient. 
So the remedy is to allow the above situation to relax under arbitrary 
diffeomorphisms of the base space. 

The final form of the axiom H3 encapsulates the notion that a smooth 
finite-dimensional family of  loops has a smoothly-varying holonomy image 
in G. A smooth finite-dimensional family of loops is a map ~: U~f~M with 
U an open subset of ~ for any n, which is smooth in the sense that the 
associated map 

~t: Ux I ~ M  

(u, i) ~ ~(u)[i] 

is continuous, and smooth (C ~) on the subintervals 

U• for io=O<il<.. . ik<l=i~+l,  n = 0 , 1  . . . . .  k 

H3. For  any smooth finite-dimensional family of  loops ~t: U~f~M, the 
composite map H~:  U~f~M~G is smooth. 

The collection of all such maps ~t from any such U into f~M defines the 
induced topology on f~M. This is the finest topology which makes all these 
maps continuous. Any map which obeys the axiom H3 is continuous 
(Spanier, 1966; Dugundji, 1966). 

2.1.2. The Representation Map 

If  H is the holonomy mapping of (B, F, b ) ~ , ,  then it has to be shown 
that properties H1-H3 hold. H1 is straightforward. To prove H2, we have 
to show first that H(O)= identity when 0 is a thin loop. 

21 am indebted to Dr. R. W. Tucker for bringing to my attention the fact that if parts of the 
loop considered are spacelike, then it does not have the direct interpretation of being composed 
of particle paths. One just has to consider it as a figure in space-time, perhaps as marked out 
by, and measured with, the aid of auxiliary particles. 
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fibers of bundle 

(o, 1) ~ o  

I ! 

I 
Fig. 1 

Let/~: I - - ,~M be the smooth homotopy of 0 which makes it a thin loop, 
so that 0= if(l), ~(0) is the trivial loop, and the map h: I x I ~ M  has Im(h) = 
Im(0) (using the tilde convention). 

We can study the lifting in the pullback bundle Bh = (Eh, Jrh, I x / ,  G) 
of B by the homotopy h. Since the image of h is one-dimensional, the curvat- 
ure form in Bh is zero, and Bh has the canonical flat connection. It follows 
that the path p: i~(1,  i) in Ix  I can be deformed to the path 

q: 

~(1-3i ,  0), 0<i_<1/3 

i ~  ](0, 3 i -  1), 1 / 3 < i ~ 2 / 3  

( (3 i -2 ,  1), 2/3<i_< 1 

without altering the endpoints of the lift in Bh. The map h carries p to the 
path 0 in M and q to the trivial path in M (Figure 1). Since the canonical 
homomorphism Bh~B carries horizontal lifts into horizontal lifts, it follows 
that there is a horizontal lift of 0 in E which has the same endpoints as the 
trivial lift of the trivial loop in M, and so the endpoints of the 0 lift'are the 
same point. Hence the holonomy of 0 is the identity element of G. It should 
be noted that the homotopy h may be smooth only on subintervals 
I x [in, in+ 1], but that the conclusion is unaffected. 

If r then H(c01 o c0~-l)=id, and since H(c0zl)=H(co2) -1, it 
follows, using H1, that H(o,~)= H(c0~). Property H3 follows from a slight 
modification of the proof in Kobayashi and Nomizu (1963, p. 74). 

Since these conditions are satisfied, the representation map ~:  ~,~,~/f, 
which takes (B, F, b) to its holonomy map, is defined. 

2.1.3. Bundle Construction 

In this section it is supposed that H~oUf, i.e., it is a map ~ M ~ G  
satisfying H1-H3. Using H, we can construct the total space E of a principal 
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bundle B as the set 

E = P M •  G/R 

where PM is the path space of M, piecewise smooth paths with p(0) = ,, and 
R is an equivalence relation quotienting PM x G: 

(p ,g )~ (p ' , g ' )  if p(1)=p'(1) and g ' = H ( p - l o p ' ) g  

The loop p - l o p ,  is formed by composing p' with p parametrized in the 
inverse direction. By virtue of properties H1 and H2, R is an equiv- 
alence relation. In the following the equivalence class of (p, g) will be 
denoted {p, g}. 

It is interesting to note that this construction is analogous to the associ- 
ated bundle construction, where ~M--+PM~ M is analogous to the principal 
bundle with fiber ~ M  and H defines the action of ~ M  on G. This analogy 
is made precise by turning ~ M  quotiented by thin equivalence into a topo- 
logical group (Teleman, 1960; Milnor, 1956). 

The projection map and G-action are 

Jr: E--+ M 

{p, g}  p(1) 
p: E x  G ~ G  

{p, g}h-  {p, gh} 

The preferred point in the fiber over *~M is 

b = {t, id}, where t is the trivial path 

The lifting function is also implicit in the construction 

l,: P M x G ~ P E  

(P, g)-~q 

with PE the space of paths in E starting over ,, and q is the path 

q: I ~ E  

i--+ {K(p, i), g} 

the contraction K(p, i) representing the section of path p from 0 to i: 

K: P M x  I-+PM 

K(p, i)[j] =p(ij) 

Now having a preferred point b in the fiber z - l ( , )  provides an iso- 
morphism between this fiber and the group G. So the lifting function l, gives 
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for each path p in the base starting at * and a point g in the fiber over �9 a 
path in E starting at g which is carried back onto p by the projection zr. For  a 
differentiable bundle with a connection a lifting function is given by assigning 
l , (p ,  g) the unique horizontal curve starting at g which covers p. The lifting 
described here may, a priori, not be of  this type. But with the aid of  axioms 
H I - H 3  we will show that it is. 

As yet E has no differentiable structure. Suppose U is a contractible 
open set of  M. Then there exists a smooth family of paths gt: U--*PM such 
that gt(u) ends at u. Using the endpoint map e: P M ~ M ,  e ( p ) = p ( 1 ) ,  this 
condition can be restated as egt= id. 

The chart Cv for Jr- 1 (U) c E is 

Cv: Ux G (ui,,,id) a ' P M x G  ...... > P M •  

where a is the canonical projection. C~, is a bijection as a map 
U x  G ~ r c - ~ ( U ) .  It is interesting to note, and will be useful later, that a = 
e ' l , ,  where e': PE- - ,E  is the endpoint map of  PE, so that the chart Cv is the 
map 

(~,id) l* e' 
C~: U x G  ' P M x G  ' P E  ) E 

Hence we can say that the lifting function is the relevant structure of  E 
which is used to define the charts. 

L e m m a  1. The charts have smooth transition functions. 

Proo f  Suppose there is a second chart C~, with gt': V ~ P M ;  then, 
putting W= Uc~ V and defining )?: W ~ M  

w ~  g, -  ~ ( W )  o g,(w) 

C'(w, g) = { O'(w), g} = { O(w), H(2 (w)  )g} = C(w, H(2 (w)  )g) 

So C-~C' is the map 

(diag,id) (id,H;?,id) (id,compose) 
W x G  , W x W x G  , W x G x G  ' W x G  

which is smooth by property H3. �9 

Since C v commutes with the G-action on E, we have the following 
result. 

rc 

Proposition. E ~ M is a principal fiber bundle with group G. [] 

In a similar way, it is possible to show that the lifting function l,  is 
smooth, in the sense that a smooth family of  paths in M lifts to a smooth 
family of  paths in E. 



Hoionomy and Path Structures in GR and YM Theory 1187 

For the present, we shall assume the proof of Lemma 3, which states 
that l ,  is the horizontal lifting of a connection on B. It is clear that the 
connection is uniquely specified by the lifting function. Thus, the construc- 
tion of  a triple (B, F, b) is complete. This defines the construction map 
~:  ~ - o ~ , .  

Proof  o f  the Reconstruction Theorem. To complete this proof, it remains 
to show that ~cg= id, or, in other words, that if (B, F, b) is constructed 
from H ~  and has holonomy mapping H', then H = H ' .  This is 
straightforward. [] 

Proof  o f  the Representation Theorem. The reconstruction theorem 
shows that ~cg=id,  so it remains to show that <g~=id. Suppose that 
~(B,  F, b) = H  and C~(H) = (B, F, b), b = (e, Jr, m, g), a n d / ~ =  (E, ~, M, G), 
and that l ,  is the lifting function of (B, F, b). Consider the map 

[* e' 
P M  x G ~ PE ' E 

This factors through the relation Rn on P M  • G to give a map ~b:/7~E. The 
map ~b is a bijection and commutes with the G-actions on E and E. 

Lemma 2. c~ is a diffeomorphism. 

Proof  To show that ~b is a smooth bijection, it is enough to show that 
the charts Cv defined for/~ map smoothly to E. The map ~bCv is 

(cP,id) l, e' 
U x G  ~ P M x G "  ' PE  ' E 

which is smooth due to the fact that a smooth family of paths lifts to a 
smooth family. Since ~b is the identity on M and an isomorphism of the 
fibers, it is clear that ~bC V, is a chart for E, and so q~ is a diffeomorphism. [] 

It is also easy to check that the induced mapping of paths takes the 
lifting function of (B, F, b) into the lifting function of (B, F, b). Hence 4) is 
a bundle isomorphism preserving M, F, and b. 

2.1.4. The Reconstructed Lifting Function Defines a Connection 

Now the missing lemma in the proof of the reconstruction theorem will 
be dealt with. 

Lemma 3. Let B = (E, It, M, G) with lifting function l,  be constructed 
as in Section 2.1.3. Suppose q is the lift of any path p ~ P M ,  and q passes 
through point c~E, q( i )= c. Then (dq/di)(i)  depends only on (dp/di)(i).  In 
fact there is a linear injection Fc: T,(c)M~ TeE such that Fc(dp/di)= dq/di. 
The images of F,. for e ~ E  define a smooth distribution (Kobayashi and 
Nomizu, 1963) on E. 
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Since the lifting property of l,  guarantees that ~,Fc = id, it follows from 
Lemma 3 that F defines a connection. 

Proof of  Lemma 3. The first point is that the lifting defined by l,  is 
local in the sense that the lift of a section J c I  of a path p c P M  depends 
only on the section pllJ ofp .  More precisely, i f p ' c P M  agrees with p on J, 
then on J the lifts o fp  and p' are related by right translation with a fixed G- 
element. So the tangent vector of a lift at a point c c E  can depend only on 
the classes of paths in M which agree in some open neighborhood of ~(c). 
For example, it might depend on any of the derivatives of the path p at the 
point 7c(c). It shall be shown, however, through Lemmas 4-8, that the three 
conditions H1-H3 in combination are sufficiently restrictive for the tangent 
to the lift to be determined only by a linear mapping of the first derivative 
o f p  at r 

Lemma 4 eliminates a possible pathology of the holonomy mapping 
(see also Section 2.5). 

Lemma 4. Suppose ~t: I ~ f ~ M  is a smooth one-parameter family of 
loops with r t, the trivial loop; then (d/di)(H~t)(O)= O. 

Proof Since only the behavior of ~t near the p o i n t ,  c M  is important, 
we can assume without loss of generality that M is the m-dimensional vector 
space Nm with * as the origin. The strategy is to embed t~ in an m-dimensional 
family of loops &: Im"--~'~ m. This is defined by its associated map co 

co: I m x I--* ~m 

(SI, $2 . . . . .  Sm, t )~(Vh(&, t), Vt2(s2, t) . . . . .  IVrn(Sm, t)) 

In this formula ~tn is the nth coordinate of the function ~/, t denotes the time 
along the paths, and the s's are the shrinking parameters. The original family 
~t is the diagonal of the parameter space Im: ~t=~A with A : I ~ I  m, 
s~ ( s ,  s , . . . ,  s). Starting from a point d on the diagonal of I m and moving 
toward a face of I m by keeping all coordinates of I "  except the nth fixed, 
we see that the function cb smoothly collapses the nth coordinate of the loop 
so that on the face & - 0 of I m the loop has no variation in its nth coordinate. 
It is the projection onto the plane x, = 0 of Nm of the original loop cb(d) 
(Figure 2). 

Now 6~ is a smooth family of loops and so Hch is a smooth mapping. 
Consequently, 

(Hv,) (H A) 
n GSn 

Evaluating these derivatives at i = 0, each term on the right is just a derivative 
along a coordinate axis ( 0 , 0 , . . . , s  . . . . . .  0) of Im. But the loop 
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t~ (0 ,  0 , . . . ,  N(s,, t) . . . .  ,0) is a thin loop, and the holonomy element is 
the identity for all values ors , .  Hence ff/Ss,)(H(o)(O)= 0. Then the conclu- 
sion of  Lemma 4 follows. �9 

Returning to the proof  of  Lemma 3, the local property of the lifting 
means that it is possible to define the lifting of all paths in M, not only the 
ones which start at .. This lifting has the product property: If  q lifts p, q' 
lifts p', and q(1) =q'(0),  then q'o q lifts p' op. It also enjoys the obvious G- 
invariance and reparametrization invariances. There is a smoothness prop- 
erty which is discussed more below, and a thin equivalence property: If  q 
lifts p, q' lifts p', p is thinly equivalent to p' [p-  1 o p, is a thin loop based at 
p(0)], and q(0)=q'(0) ,  then q(1)=q'(1).  

Instead of considering directly the lifting of tangent vectors, it is useful 
to consider, as a generalization, the lifting of one-parameter families of  paths 
~: I ~ M  I [MIc Map(/,  M )  denoting the unpointed piecewise smooth path 
space] which shrink at parameter zero to the constant path at some point 
in M (Figure 3). Such a family is specified by the smooth map u/: I x  I~M,  
with N0,  t )=  x. The first factor will be denoted s, the shrinking parameter, 
the second, t, is the time along the path. The quantity 

v ' - v  ~  1) 8~,(0, O) 

Os Os 

generalizes the tangent vector of a path in M. For ifp:  I--*M is a path, then 
putting ~s, t) =p(st), it follows that v ~ = (dp/di)(O) and v ~ = 0. The vectors 
v ~ v ~ will be called the boundary vectors of  gt. 

Now suppose that ~: I x  I ~ E  lifts ~t, i.e., for fixed s, the path ~. (s, t) is 
a lift of  ~t(s, t). The function s~;~ (s, 0) determining the starting point of the 
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a/~ 1) 

(0 0) M - lxI 
genera l ized 

tangent  

vector  
Fig. 3 

lifts is arbitrary. If  this is chosen to be smooth, then ,~ is also smooth. 
Consider the boundary vectors of  ;L, 

wl _ ~,~ (0, 1) w0.__ ~ (0, 0) 
Os ' 0s 

Since t ~  Vt(0, t) is the trivial path, putting c=  A (0, t), both w ~ and w ~ lie 
in T~E. 

The first part of  Lemma 3 is a consequence of  the following result. 

L e m m a  5. There exists a linear injection Fc: T , ~ c ) M ~  T~E such that for 
any functions ~t and A defined as above 

W 1 - -  W 0 ~--. r C ( ~ ) l  - -  /.)0) 

P r o o f  The proof  spans Lemmas 6-8. 

L e m m a  6. Suppose we have a number of  smooth one-parameter famil- 
ies of paths @k in M, k = 1, 2 . . . .  , n, shrinking to the point *, with lifts '~k 
shrinking to the point be  ~r-l(,),  defined as above, and such that 

Vtk(s, 1)=Vk+l(s, 0) and Vt,(s, 1)=Vtl(S, 0) = * 

so that the composition 7: i ~ n ( i )  ~ ~ - 1 ( i )  o " " " @~(i) is a map I ~ M  

with O--*t; then ~ = 1  w ~ - w ~  
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P r o o f  Define g~: I ~  G to be the maps such that 

2.~+1(s, O)=A.k(S, 1)g~(s), k = 0 ,  1 . . . . .  n 

putting ~(s ,  t )=Z.+l (s ,  t ) = b  (Figure 4). Then gk(0)=id,  and H(7(s)) = 
go(s)gl(s)g2(s)  �9 �9 �9 g . (s ) .  Lemma 4 then gives 

ag~(~ 
k=o ds 

Using the Leibnitz rule on the defining equation of  the g's gives 

w~ = w~ + b dgk(O___)) 
ds 

so that ~"  w~ and the result follows since Wo ~= 0 w,+l =0.  �9 k = O  

L e m m a  7. Suppose we have two smooth one-parameter~families of  
paths ~ and ~' in M shrinking to the point *, with lifts 2 and 2' shrinking 
to the point bs rc - l ( , ) ,  and the boundary vectors of  ~t, p,' satisfy v '1 = v  1, 
v '~ v~ then it follows that the boundary vectors of Z,/l.' satisfy w ' 1 -  w '~ 
W 1 - -  W o .  

P r o o f  Families of  paths f/, t~, J~: I ~ M  1 will be defined in such a way 
that the composition 

r(i) = f / - l ( i )o  ~( i )  o ~-1(i)o ~(i)o ~t'(i) o fT(i) 

is a map I--*f~M. The fl and a will be defined so that w ~ - w ~  and 
1 0 w u - w a  = 0. Then Lemma 6 will give the desired result since the contribu- 

tions to ~ w I - w ~ will cancel from ~/and f/- 1. 
Since only the behavior of the functions in a neighborhood of  �9 is 

required, it can be assumed without loss of generality that M =  ~m, with * 

g. 

b o  

@~r ~ 1 7 6  

Fig. 4. Picture at a fixed value of s. 
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as the origin, The functions are 

rl(s, t) = t~t'(s, O) 

a(s,  t ) = ( 1 - t ) ~ t ' ( s ,  1) + t~t(s, 1) 

fl(s, t )= (1  - t)gt(s, O) + tgt'(s, O) 

Since the values and the derivatives of  the two curves s ~ V t ' ( s ,  1) and 
s - . g t ( s ,  1) are equal at s--O, the function 

A :  I x  I ~ R  m 

I , t , 
V(s, 1 ) + ~  [V(s, 1 ) - ~  (s, 1)1, s#O 

/ 
~2 \ ds 2 ds 2 ]' s=O 

is smooth, a can be factored through A: it is the map a = A to, 

a: ( s , t )  ~ (s, s2t ) A M 

Consequently, if )-A is a lift of  A, then )~atr is a lift of  a, using the reparametriz- 
ation invariance of  the lifting. Since d~c(O, 1) /d s  is the same tangent vector 
as dtr O)/Os, it follows that 

w~_wo_aa(o, 1) aa(O,O)=o 
8s 8s 

Similarly, w~ -  w~ = 0. �9 

The next lemma shows that only the difference v 1 -  v ~ is important. 

L e m m a  8. Suppose we have two smooth one-parameter.families of  
paths ~ and ~t' in M shrinking to the point *, with lifts 2 and Z' shrinking 
to the point b~ n - l (* )  just as in Lemma 7, but with v ' 1 -  v '~ v I -  v~ then 
it follows that w 'l - w '~ = w ~ - w ~ 

P r o o f  Again we can suppose that M =  Rm, with * = 0. Suppose four 
vectors v 1, v ~ v '1, v'~ ~m are given, with v '~ - v '~ v I - v ~ The two functions 
v a n d  ~':  I x I ~ M  

g: (s, t)--*s[(1 - t ) v ~  tv 1] 

V': (s, t ) - -*s[ (1- t )v '~  '1] 

have boundary vectors vl=8g(O, 1)~as, etc. The two-parameter family 
: I x I ~ M  I is defined to interpolate between the one-parameter families ~'  
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and ~'. The �9 is defined by mapping I x I x I into R '~ by the linear map which 
extends 

(1, 1, 0)--+v ~ (0, 1, 0 ) ~ v  '~ 

(1, 1, 1 )~v  1, (0, 1, 1 )~v  '~ 

~t and ~,' factor through q~: gt=q~cr and ~'=qbcr' with cr and 
or': I x  I ~  I x I x  I defined by 

cr(s, t) = (s, s, s t)  

a ' ( s ,  t) = (0, s, s t)  

The point of the construction is that (Figure 5) 

~ 8o-(0,1) 8o-(0,0) 8or'(0,1) 0o-'(0,0) 

8s 8s Os 8s 

If  2 .  lifts q~, then ~ , a  and 2oct' lift ~t and gt', and hence ~*(0, 0, 0)(4) = 
w 1-  w ~ w '1 -  w '~ The lemma is proved for the particular maps N, N' con- 
structed here by linear interpolation in t. But Lemma 7 shows that any other 
families of paths will give the same result. I 

To complete the proof of Lemma 5, we note that Lemmas 6-8 show 
that the map Fb: T , M ~  ThE is well-defined. The fact that it is linear hinges 
on the product property of the lifting. Suppose that Z: I ~  M ~ is the composi- 
tion of two families ~t and ~' shrinking to the point , ,  i.e., 

2 (0  = ~(i)~ [?'(i) and t~(O) = ~'(0) = �9 

t 

l x l  l x l x l  M 

Fig. 5 
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If  v ~, v ~ V tl, and v '~ are the boundary vectors of ~ and g',  then v ~  v '1, and 
v ~ and v '~ are the boundary vectors of Z. The product property of the lifting 
implies that 

F ( v  I - v '~ = F ( v  1 - v ~  + F ( v "  - v '~ 

and so F is linear. 
The conditions of the lemma are thus satisfied at the point c = b. The 

same proof can be applied at other points because the holonomy mapping 
based at other points in E obeys the same axioms H1-H3. �9 

The smoothness of the distribution on E given by the image of F is a 
straightforward consequence of the smoothness property of l . .  This com- 
pletes Lemma 3. �9 

2.1.5.  C o n c l u s i o n  

The representation theorem provides an alternative model for the 
Yang-Mills configuration space, and gives some useful insights into its struc- 
ture. It is the development of much earlier work on topological bundles 
(Milnor, 1956; Lashof, 1.956), which used homotopy classes of lifting 
functions to classify topologically distinct bundles. 

There is a similar type of representation for the gravitational field, which 
is the subject of the next section. The results here form the basis of the 
gravitational construction. Apart from this technical role, they also provide 
an interesting comparison of the construction and structure of the classical 
Yang-Mills and gravitational fields. This gives a fresh view of the deep 
similarities and the differences of principle between these two types of phys- 
ical fields. 

Section 2.4 gives some applications of the Yang-Mills results. Section 
2.5 relates the curvature two-form to the holonomy of families of loops, and 
shows how this fits in with the result of Lemma 4. 

2.2. Bundles and Liftings 

Many physicists are quite happy with the idea that gauge fields are Lie- 
algebra-valued one-forms on the base manifold, and regard bundles as an 
extra complication, which one can happily do without. For them, all bundles 
are trivial, and the connection is a G-invariant one-form on M x G. The 
extra G's worth looks rather redundant. So why is the language of bundles 
natural and appropriate here? To answer this question, first the idea of 
horizontal lifting will be described. 
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In general terms, if z: E ~ M  is a function, then a lifting assigns a path 
;t in E to each path p in M in such a way that zr projects the path 2, onto p: 

I /  p M 

Usually one can freely specify the starting point 5t (0) of 2 in z-~(p(O)). 
The lifting is usually required to vary continuously with respect to both the 
path in M and the starting point in E, but the details of this will be omitted 
here. 

For a gauge theory (defined by potentials on the base) one can define 
the parallel transport map r: MI~G. The horizontal lift of a path p into the 
trivial bundle M x G starting at (p(0), g) is the path i~(p(i) ,  gr(K(p, i))), 
where K is the contraction in path space: K(p, i) is the path which traverses 
the section [0, i] of path p, i.e., K(p, i)[j]  =p(ij). The holonomy of a loop, 
which was defined in Section 2.1, can now be seen to be just the parallel 
transport operator for the loop. 

Any lifting function can be specified by giving, for each path p in the 
base space, a vector field w in the section of the bundle above the path, so 
that the lifts A, are the integral curves of the vector field. The vector field 
must project down onto the tangent vector field of p in the base, and so it 
is determined up to an arbitrary vertical component. The horizontal lifting 
is a very special type of lifting function. For each point ceE, there is a linear 
mapping Fc: T~(c)M~T~E such that for any path p, w=d~/di=F(dp/di) .  
The image of F is called the horizontal distribution of TE, and at a point e 
it defines the horizontal subspace of TeE. To put this another way, the 
important point is that for any two paths passing through the same point, 
p(i) = z(c), and having the same tangent vectors at that point, the tangent 
vectors of the lifts agree. The vector w depends only on the tangent vector 
of the path at that point, and on no other feature, local or nonlocal, of the 
path. That is what distinguishes the horizontal lifting of a connection from 
any other lifting. 

After this slight digression on lifting functions, we come back to the 
original question: why are bundles essential? The short answer is that in the 
holonomy representation nontrivial bundles automatically appear alongside 
the trivial ones (we are supposing that the base space actually has some 
nontrivial bundles, so that it is not a contractible space, as, for example, ~n 
is). The reason for this is that the concept of parallel transport "unifies" the 
infinitesimal aspect of the connection one-form (on the base space) with the 
topologically nontrivial global aspect of the finite transformations of the 
transition functions on overlapping charts. In bundle language it "unifies" 
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the connection and the topology of the bundle. To put it crudely, the only 
difference between an electromagnetic field on a circle and a Moebius band, 
as far as parallel transport and holonomy are concerned, is that in one case 
the structure group (U1 or ~) is connected and in the other case (Z2) it is 
not. Conventionally, one would ascribe the holonomy in the first case to the 
presence of a field, and in the second case to the topology of the bundle. 
When one comes to consider the set of all holonomy mappings, it is rather 
artificial to separate out those that belong to different bundles. For different 
connections on the same bundle, the holonomy mappings are in the same 
homotopy class, so perhaps one could restrict attention to only one homo- 
topy class of maps. This seems a cumbersome idea, and since there is nothing 
to be lost by considering different bundles, it is not pursued. 

There is a second reason for using bundles in Yang-Mills theory. The 
bundle constructions have a very deep analogy with the reconstruction of 
the manifold of general relativity, which is described in later sections. The 
analogy is that the base space of Yang-Mills theory corresponds to the 
tangent space in gravity, and the total space of the bundle corresponds to 
the differentiable manifold of general relativity. Thus, to explore the relation 
between the two theories, it is essential to use the theory of bundles for 
Yang-Mills fields. 

2.3. The H-Group Structure of the Loop Space 

In homotopy theory the H-group structure of the loop space f~M is 
important. The H-group property of the composition law is that the follow- 
ing three homotopy equivalences hold: 

0),-~ a )  o t 

(.0 o ( 0 - 1  ~ t 

( a  o 13) o ? , ~  a o (13o ~') 

where t is the trivial loop, so that if the loop space is factored by homotopy 
equivalence, the result is an algebraic group. 

The important thing to notice is that these homotopies are all of the 
form 

h 
I x I  ' I  ' M 

where f~ is the loop on the left-hand side of the three homotopy equivalences. 
The map h is not continuous, but the overall map f~h is. The homotopies 
are thus actually all thin equivalences, and so f~M/0 (0 is the thin equivalence 
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relation) is a group. For the analogous constructions in the space of piece- 
wise linear loops on a simplicial complex, see Milnor's work on universal 
bundles (Milnor, 1956). 

2.4. Flat Bundles in Physics 

There are many situations in physics where the information about a 
gauge field is given by specifying its holonomy. One example is a gauge 
field which has zero curvature, giving homotopic loops the same holonomy 
element, but with nontrivial holonomy elements for noncontractible loops. 
The holonomy mapping descends to a group homomorphism 

H: 7q(K)--,G 

Now any such holonomy mapping obeys conditions H1-H3. H1 is 
immediate, H2 follows because thin equivalence is a restricted notion of 
homotopy equivalence, and H3 follows because if ~: U-- ,DM is a family of 
loops, then Hq~ is constant on connected components of U, and hence 
smooth. The reconstruction theorem can be applied, and so it is clear that 
the gauge field is properly specified by just the information in H. 

This type of situation occurs in several different physical models. Some 
examples are the Aharonov-Bohm effect, vacuum configurations for gauge 
theories in a Kaluza-Klein context, where the holonomy elements are a 
symmetry-breaking mechanism, and again in the context of topological field 
theories. 

2.5. The Curvature Two-Form 

It is a well-known "fact" that the holonomy of a "small" loop expands 
as 

where the integral is over the region V which the loop bounds. One can 
make this expansion precise: If gt: I ~ M  is a smooth family of loops with 
gt(0) = t, then the second derivative of the holonomy is related to the curva- 
ture tensor F on the base manifold by 

d2(H~)  
as 2 (0)=F(A) 

A is a bivector, which contracts with F to give a Lie algebra element. A 
indicates the asymptotic shape of the area of the loops as they shrink to 
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zero. Its definition is 

~2 ~o ~2 f v = - -  xtUdx vl = - -  dx Eu A dx vl A'v Os2 v Os2 

where x ~ is the coordinate function, and the derivatives are taken at s = 0. 
These relations can be proved by differentiating the differential equation for 
the parallel transport operator. The linear term of  the expansion of  the 
holonomy of  a family of  loops shrinking to the trivial loop is zero: 

d(H(g) 
- -  ( 0 )  = 0 

ds 

This is the content of Lemma 4 of  Section 2.1. 

Note: The quantity A vv is a tensor at the point , .  One can take the 
~2/0s2 inside the integral to define it as 

fo  dxt~ d2xVl 
dt ds ds dt 

with the derivatives evaluated at s = 0, which is an integral over vectors at 
*, since xV(0, t) = , .  The other two terms of  the differentiation vanish. 

3. H O L O N O M Y  AND GRAVITY 

3.1. Introduction 

The last section was concerned with Yang-Mills theory in its own right. 
This section presents the analogous constructions for general relativity. The 
Yang-Mills work provides both the general framework for a similar treat- 
ment of  gravity and some specific results which are of use in this section. 
The work on gravity is not complete in the same way as the Yang-Mills 
results, and so a less formalized presentation is used. The difficulties are 
of  a fairly technical nature; mainly questions about differentiability and 
differentiable structure, and are still open problems. However, the goals are 
the same: we are looking for the holonomy representation of a gravitational 
field configuration, an axiomatization of  holonomy, a reconstruction theo- 
rem for the field configuration, up to a diffeomorphism, and finally a repre- 
sentation theorem for the gravitational configuration space. Perhaps the 
reader can keep in mind the more formal development of the Yang-Mills 
theory. 
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In order to present properly the analogy which motivates the gravi- 
tational constructions, the basic idea of the Yang-Mills theory is presented 
afresh. 

3.2. Yang-Mi i l s  

A Yang-Mills field is a connection on a principal bundle B= 
(E, lr, M, G). The base space M can be any differentiable manifold, but we 
have in mind mainly Minkowski space. A curved space-time M involves 
gravity, and since the point of this section is to represent a gravitational field 
in a different way, it is better to think of the Yang-Mills theory being i-a the 
absence of gravity. 

The important aspect of the connection here is that it provides a lifting: 
given a path in the base space and a point in the fiber over the initial point 
of the path, it gives a path in the bundle starting at the given point. This 
point is the one whose tangent vectors are horizontal at every point, and 
project down onto the tangent vectors of the original path in the base. 

Using the idea of lifting, we can describe the points of the total space 
of the bundle in an unusual manner. We fix a basepoint �9 in the base once 
and for all, and also one in the fiber over. ,  so that the fiber becomes a copy 
of G. A point c E E  is to be described by an equivalence class of P M  x G. It 
will be convenient to call this equivalence class c also. A pair (p, g) is in c 
ifp starts at �9 and ends at ~c),  and the lift ofp starting at g ends precisely 
at c. 

This description of the bundle B describes the connection neatly, too. 
The best way to see this is to exhibit the lifting, just using the information 
given in the equivalence classes. This was described in Section 2. 

The final part of the story is that there is an equivalence relation which 
describes the classes in P M x  G of the points in E. R is the relation 
(p, g) ~ (p', g') if the endpoints o fp  and p' coincide, and g' = H ( p - 1  o p,)g. 

H is the holonomy mapping of closed loops in M to their holonomy elements 
in G. Thus, both the bundle and the Yang-Mills field configuration, the 
connection, are described by the holonomy mapping. The holonomy map- 
ping involves only the base space M and the group G. To calculate the 
field configuration it describes, the bundle has to be constructed using the 
equivalence relation R: 

E = P M  • G / R  

and then the lifting function follows. 
Section 2 presents this in much more detail, together with axioms for 

the subspace Jt~cMap(f~M, G) which represents all possible holonomy 
mappings. 
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So, to recap, Yang-Mills theory can be said to be about the holonomy 
of loops in M. The lifts of these loops do not dose, the endpoints being in 
the same fiber, and mapped onto each other by the holonomy element in G. 
In gravity we shall see that the "lifted" loops do not close by a translation 
in a space-time direction, and by a rotation of frames. 

3.3. Gravity 

The gravitational field is described by a differentiable manifold X with 
a metric, and a connection on the bundle O(X) of orthonormal frames. As 
before, we pick an arbitrary basepoint * in X and a frame f a t  , ,  so that the 
fiber over X is identified with the Lorentz group G. To achieve the holonomy 
description of gravity, we need the idea of development. The development of 
a curve in the base space psPX is defined by horizontally lifting the curve 
into O(X). Then, using the canonical ~n-valued l-form on O(X) (the 

t "vierbein"), e, the integral C(t)= ~o e, integrating along the lift of p, gives a 
curve in ~ ,  which is identified v i a f w i t h  the tangent space at , ,  viewed as 
an affine space with a metric, i.e., Minkowski space M. For the rest of the 
section, M is now definitely Minkowski space. Intuitively, we can think of 
the development as the curve in PM with the same geometry as the path p, 
that is, it bends through the same angles at the same proper distances as p. 
It has the same intrinsic and extrinsic geometry as p. One can also define 
the curve C as the unique path in M obeying C(0)--0 and 

dC_.dt rK(P'i~(~t) 

where r/~w.,) is the parallel transport map: Tp(,)X~ T,X. Note that a closed 
loop in PX will not in general develop a closed loop in M. 

Now we can see how to describe the manifold X: 

point of X = subset of PM 

where p is in xeX  if p is the development of a path which ends at x. The 
gravitational field is described: 

point of O(X) = subset of PM x G 

where the G element is defined in exactly the same manner as for Yang- 
Mills theories: the frame is parallel transported back to the fiber above ,,  
using the connection. This second set of subsets is a very powerful object. 
It describes the set X, its differentiable structure, its metric, the frame bundle 
O(X), and the connection on it, as will be shown in detail below. In the 
same way as for Yang-Mills theory, there is an underlying equivalence 
relation yielding these subsets of PM x G as equivalence classes. This relation 
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is specified by the holonomy set ~ c P M  • G, which is just the subset of  
P M  x G which corresponds to the f r a m e r  One can decompose ~ into a set 
P c P M  and a mapping h: P ~ G ,  so that (p, g) ~ i f fp~P and g = h(p). The 
set P is the subset of P M  corresponding to the point �9 6X, or in other words, 
the paths in M which are the development of  closed loops in X. The function 
h is the Lorentz holonomy mapping of P, and is simply the holonomy map- 
ping, in the sense described for Yang-Mills theory, of the Lorentz connection 
in the bundle O(X)  for the loops in X corresponding to the elements of  P. 

The (affine) holonomy mapping H of P takes a point (p, g) to the iso- 
metry of  M given by a rotation of g about the origin followed by a translation 
by an amount  p(1), the value of the endpoint of the path: 

H: P ~ A  

p ~ p ( 1 ) h ( p )  

where A is the Poincar6 group. H is in fact the holonomy mapping of the 
affine connection in the bundle of affine frames. Note that H can be derived 
from the information in ~,  or, equivalently, the information in P and h. 

Now we come to the description of  the two equivalence relations, on 
P M  and on P M  x G, which reconstruct the manifold and the bundle of  
orthonormal flames, purely in terms of  the information in P and h. The 
relation R on P M  x G is 

R: (p, g) ~ (p', g') 

and 

if there exists zr~P such that 

re= (H0r)p '-1) op 

g = h(~r)g' 

The first is rather a curious equation, since ~r "appears on both sides." 
If  we want to consider 0r, h0r)) as a transformation acting on the space 
P M  x G, the condition can be rewritten: There exists lr~ P such that 

p ~ (HOOp')~ Jr 

g= h( rc)g' 

with the ~ denoting thin equivalence (see Section 2). 
With the relation R we can form the set 

E = P M  x G/R  

which is identical to the total space of the bundle. Using the relation R' on 
P M  defined in a similar way, 

R': p ~ p '  if there exists zr~P such that 

zr= ( HOr)p'- ') o p 
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it is clear that PM/R'  is the set X, and that the projection Jr: E---,X defined 
by {p, g} R ~ {p} R' is intrinsic to the construction. It is also extremely plausible 
that the differentiable structure, metric, and connection are implicit in the 
constructions. As far as the metric goes, we can see that X is "made of" 
sections of paths in M, and so distances can be measured by measuring the 
corresponding distances in M. This can be formalized by defining the inverse 
development map A, 

A: PM--* PX 

A(p)[i] = {K(p, i)} 

where K is the contraction in path space introduced in Section 2: 
K(p, i)[j] =p(/j). The map A gives paths A(p) in the set X with a known 
metric geometry, i.e., that of pePM,  and hence can be expected to give a 
metric to X. The differential structure should follow because A allows the 
construction of smooth families of paths in X from smooth families of paths 
in M. In other words, the differentiable structure is that of M = ~4, patched 
together in a way determined by the equivalence relation. From these consid- 
erations, it is seen that h plays the role for the manifold X that l. plays for 
the bundle in Yang-Mills theory. 

Finally, the connection in the bundle E ~ X  should be reconstructable 
in much the same way as for Yang-Mills theory. In fact the strategy is to 
construct the space-time manifold, and then the holonomy mapping of the 
(Lorentz) connection, satisfying the axioms H1-H3 of the Yang-Mills 
theory. Then the Yang-Mills results can be used to construct the connection 
on the frame bundle. 

3.4. Axiomatization and Reconstruction 

The previous section showed how to develop the holonomy representa- 
tion of gravity by analogy with the Yang-MiUs construction. It exhibited 
the holonomy information (P, h), and showed that it is plausible that a 
complete reconstruction of the gravitational field configuration should fol- 
low from it. This section seeks to axiomatize the set P c PM and the mapping 
h : P ~ G ,  and provide a reconstruction from the axioms. Actually, the basic 
ingredients of the reconstruction were spelt out in the previous section. The 
axioms are not yet complete, and so parts of the reconstruction cannot be 
done rigorously. The difficulties are pointed out. 

Since the Lorentz group is used throughout, it is to be expected that 
the reconstruction will yield a bundle with a metric compatible connection. 
However, the notion of torsion has no basic construction in the holonomy 
scheme of things, and so the connection will be independent of the metric, 
and the torsion may take any value. Later, when the field equations are 
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discussed, the equation torsion = 0 will be seen to have a similar status to 
the Einstein field equation. 

While discussing exactly what the gravitational configuration space will 
be taken to be, there are two further properties of a gravitational field to be 
mentioned, namely completeness and the Hausdorff property. The question 
of what happens to the holonomy of a non-Hausdorff manifold is rather 
interesting. It seems likely, however, that the reconstruction process from 
the holonomy information will only yield Hausdorff manifolds. This is 
because in a non-Hausdorff manifold there exist paths [0, 1)~X, open at 
one end, with two possible endpoints to complete the curve to a path 
[0, 1]-*X. These paths have the same development, which is of finite 
(Euclidean) length. [It is to be supposed that an arbitrary positive-definite 
metric is used in the tangent space M, as is usual in discussions of complete- 
ness (Hawking and Ellis, 1973).] Such paths can be constructed by the 
following method. Because the manifold is non-Hausdorff, there exist two 
points x and x' which cannot be separated by open sets. Now in two charts 
on open sets U and U' containing the points x and x', respectively, we can 
consider two sequences of open balls Bn and B ' ,  centered on x and x'. The 
intersection of Bn with B" must be nonempty, and we choose a sequence of 
points pn, with p~ lying in the intersection of Bn and B' .  If the radii of the 
balls are chosen to converge to zero as n ~ ,  the sequence of points pn 
converges to both x and x'. The path [0, 1)~X is constructed by joining 
together the points in a suitable fashion, for example, by linear interpolation 
in a chart. If the radii of the balls are chosen to converge sufficiently fast, then 
the development of the path will have finite length. Now in the holonomy 
description the points of space-time are labeled by the developments of the 
paths of particles which arrive at that point; the points have no a priori 
existence themselves. The construction of the manifold consists in just 
grouping together the paths of all the particles which are in coincidence, 
defined by the equivalence relation R'. So it would be impossible if in the 
resulting manifold there were two points which were the endpoint of just 
one particle path. So it would seem that non-Hausdorff manifolds are 
unphysical, if we believe that the holonomy construction actually represents 
the physics of the definition of the manifold, as an abstraction from the 
behavior of particles. 

We can still contemplate a non-Hausdorff manifold, however, and ask 
what the essential difference is in the behavior of the holonomy, in distinction 
to a Hausdorff manifold. It seems to me that, because two distinct paths in 
the manifold may have the same development, probably one of two things 
can happen. Either the holonomy does not obey the axioms to be presented 
below, or it does, and the reconstruction process identifies regions which 
have an identical geometry. The standard example of a non-Hausdorff mani- 
fold is made by taking two copies of the real line ~, and identifying them 
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on the open interval (0, ~) .  The two points 0 in each copy are the two 
points which cannot be separated by open sets. The tangent space is R. If 
the metric on the manifold is taken to be just the standard metric on ~, the 
development of a path on the manifold is the path in E one gets by identify- 
ing the two "bottom legs" ( - ~ ,  0] of the manifold. Now the holonomy set 
will be identical to that of R, as the base manifold, and so the reconstruction 
process will give back as the manifold only ~. In other words, the two 
geometrically indistinguishable "legs" ( -  ~ ,  0] get identified. If, on the other 
hand, the two legs are given different geometries [this is not possible in one 
dimension!--so imagine a two-dimensional example E x R identified 
on R • (0, ~)] ,  then the holonomy description may be inconsistent. For 
example, two loops with identical development but which are partly in 
different "legs" may have different Lorentz group holonomy elements. Hence 
the mapping h: P ~ G  would not be definable. 

Completeness of a manifold can be defined in terms of the development 
mapping 6: P X ~ P M  which takes paths to their developments. A manifold 
is said to be complete if Im(8)= PM. In physical terms, every conceivable 
particle motion, as defined by its geometry, can take place, and ends at some 
point in the manifold. This notion of completeness coincides with the notion 
of b-completeness (Hawking and Ellis, 1973). Completeness is defined in 
this way because for a pseudo-Riemannian metric the manifold does not 
have the metric space structure that a positive metric would give. In the 
case of a positive metric, the metric space completeness coincides with 
development completeness (Kobayashi and Nomizu, 1963). 

For the reasons given above, then, a gravitational field configuration 
will be defined as a connected, Hausdorff manifold which is complete in the 
sense that the development map is complete, with a metric of Lorentz signa- 
ture, and a connection on the bundle of orthonormal frames, so that the 
connection is metric compatible, but may have nonzero torsion. 

Now we turn to the details of the axiomatization. We start with P and 
h. From it H: P ~ A  is defined in the same way as before: H(p)=p(1)h(p).  
Then a product operation �9 on P is defined: 

p~ * p2 = (H(p2)pl) o p2 

and an inverse operation p~/~: 

p = H ( p ) - I p  -1 

The first and second axioms are as follows. 

G1 (Homomorphism). If p~,pz6P, then pl *pz~P, and h(pl *p2) = 
h(p2)h(pO. 

G2 (Inverse). I fp~P,  then p~P. 
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Now at some stage it has to be shown that if P and h are derived from 
a gravitational field, i.e., manifold X, metric, etc., then the axioms hold. In 
order to motivate the axioms, this will be done as the axioms are stated. 

Proof of G1 and G2 for a gravitational field configuration. P is the 
development of the loop space of the manifold, and the product and inverse 
operations on P are just the product and inverse operations of the loop space. 
The homomorphism condition on h is just the corresponding condition for 
the holonomy mapping of the Lorentz connection. �9 

Since a path which is thinly equivalent to a loop is also a loop, and the 
holonomy mapping of a connection agrees on thinly equivalent loops, it is 
natural to propose the following. 

G3 (Thin equivalence). P contains complete thin equivalence classes of 
paths. The map h agrees on these equivalence classes. 

Attempted Proof of G3 for a Gravitational Field. The proof of this is not 
complete, and is one of the technical problems referred to at the beginning of 
the section. The proof rests on the following conjecture: For p, p'~PX, p is 
thinly equivalent to p' iff S(p) is thinly equivalent to 6(p'). The problem in 
proving this is that in general the homotopy which establishes one of the thin 
equivalences does not develop (or inverse-develop) to a homotopy which 
establishes the other one. This is easily seen to be the case if the image of 
one of the thin loops is not a simply connected set. However, one can 
establish the proof for a special class of thin loops, ones which can be 
transformed to the trivial loop by a finite number of operations of either (1) 
reparametrization of the loop, or (2) replacing subsections of the path of 
the form p-1 o p with the constant path at p(0). It is not actually clear 
whether this is a more restricted class of thin loops than the original defini- 
tion. There may be a pathological example which shows that it is a restricted 
class. 

There are three possible ways out of the problem: establish the conjec- 
ture, modify the definition of thin loops to a more restricted set (all the 
proofs would work with the restricted notion of thin loop given above), or 
prove that this restricted set is actually all the thin loops. In any event, the 
lack of a proof does not seem too serious. The proof will, however, be 
assumed in the following. �9 

Returning to the axiomatic development, a few facts can be established, 
from the axioms. 

Proposition. H agrees on thin equivalence classes. 

Proposition. If P is not empty, t~P and h(t)=id, t being the trivial 
loop. 
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Proof There exists peP,  hence p , p = p - ~  ~  which is thinly 
equivalent to t, so teP. Then h(t) = h(p �9 p) = h(p)h(p). But h(t) = h(t �9 t) = 
h(t) 2, so h(t)=id. �9 

The proof also shows the following result. 

Proposition. h(p) = h(p) - ~. 

Now we consider the relation R' introduced in the last section. The 
three axioms introduced are sufficient to prove that R' is an equivalence 
relation. The proof is rather tedious, and not particularly illuminating, and 
so is omitted. Then the set X is defined by X = PM/R' ,  with basepoint �9 = 
{t}, and the inverse development map A: P M ~ P X  is defined as in the last 
section: A(p)[i] = {K(p, i)}. Actually it is a bit premature using the space 
PX, as the set X does not even yet have a topology, let alone a differentiable 
structure. The map A still exists, however, as a map into the space of 
functions I ~ X ,  and so for the moment PX will be defined as just the image 
of the map A, as a subspace of the space of functions I ~ X .  Likewise, D..X 
is defined as the subset {p: p(1)=  .}. 

Proposition. If  pl ,  p2~PM and pl ~P2 by thin equivalence, then p~ ~pz 
by the relation R'. 

Proof Define O=p ;-1 op2. Then OsP and H(O)=id, and so 

(H(O)p;-') op2=O 

that is, p~ "~pz by R'. �9 

Proposition. A maps P onto D.X, and pl * P2 is mapped to the composi- 
tion of loops A(pj) o A(p2). 

Proof For a general peP,  A(p)(1)= {p}, so to show that A(p) is a 
loop, it is necessary to show that {p} = {t}. If  q is the path top ,  which is 
just a reparametrization of p, then q is thinly equivalent to p, and q~P. 
Moreover, q=(H(q) t - ' )op ,  which means that, by definition, ( t}={p}. 
Clearly, the reverse argument holds; if {t} = {p}, then peP,  and so A(p) is 
a loop. 

For the product property, consider two general paths p~ ,p2~P. Then 
A(pl ,p2)=A(H(p2)plop2)=qloA(p2) ,  where ql is the path ql(i) = 
{(H(p2)K(pl, i)) op2}. But it is easy to show that 

R'  (H(p2)q)op2 ~ q 

for any path q, and so q~(i)= {K(p, i)}, i.e., qi = A(p~). �9 
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Before going any further, this is the right point to introduce the smooth- 
ness axioms. Clearly, so far there is no reason to suppose that X is a mani- 
fold; in fact, with the axioms presented so far it may be very far removed 
from a smooth finite-dimensional manifold. For  example, take P to be a 
proper subgroup of  f~R n, for example, say by removing the loops passing 
through some of  the points of Rn: P =  f~U, with U a subset of  R n, and h to 
be trivial: h(m)= id for all og~P. Then P and h will satisfy the axioms G1-  
G3, but the reconstruction will yield something rather bizarre, certainly not 
a manifold. The paths which end at points outside U will not be related by 
R' to any other paths. So if p is such a path, it will form an independent 
point of  X. The set X will contain " too many points" in the sense that if 
one considers deforming p locally, then X is locally the same "dimension" 
as the path space PM. Similarly, one can also imagine that too many points 
may be identified, leading too small a dimension for X. It may also happen 
that the paths are identified by R' in a chaotic, discontinuous manner, not 
admitting any smooth structure for the set X. 

With these points in mind, the axiom G4 should be tentatively (and 
imprecisely) stated as: 

P is a smooth submanifold of PM, of  codimension four. 

Before discussing what this might mean, a simple example serves to 
motivate the axiom. Consider p~4, with * = 0. This is a vector space with 
pointwise addition of  paths. The loop space ~'-~4 is a linear subspace of  PR 4, 
and so by any decent definition of  the manifold structure o f P ~  4, this would 
be a submanifold. The quotient space Q = P ~ 4 / ~ 4  is a vector space of  
dimension four, and coincides with set X = P~a/R' .  In fact, Q is isomorphic 
to ~4 by the endpoint map of  the path space. 

To arrive at a more precise notion of what a smooth submanifold is, 
we have to examine the smooth structure, which is relevant here, of  the space 
PM. There is a well-defined notion of  a smooth map into P M  from a finite- 
dimensional manifold: the notion of  a smooth family of  paths. There is also 
a well-defined notion of  a smooth map from P M  into a manifold Z: the 
smooth families V: U ~ P M  give a smooth map U ~ P M ~ Z .  So it is natural 
to suppose that the canonical projection map a: P M ~ P M / R ' = X  should 
be smooth in this sense. Now a =  eA, where e is the endpoint map P X ~ X .  
This means that the differentiable structure of  X should be defined in such 
a way that for any smooth family of paths @: U ~ P M ,  the map 

U , P M  ~ PX  , X 

is smooth. At this point, to check that we are on the right track, we can 
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compare this expression with the construction used in the Yang-Mills theory 
to construct charts on the total space E of the bundle 

(~ , id)  1. e' 
Cv: Ux  G , P M x  G ' P E '  ' E 

which is very similar. It has already been remarked that the inverse-develop- 
ment function A plays the same role for the manifold construction as l, did 
for the bundle construction of the Yang-Mills theory. 

Without going too deeply into the technical problems involved [which 
start with the fact that ~ U) is not open in PM],  we shall assume, as axiom 
G4, what should be the principal conclusions of the above tentative proposal. 

G4. There is a unique four-dimensional smooth structure on X such 
that for any smooth family fi: U ~ P M  the map eAfi: U ~ X  is smooth. Paths 
are mapped nondegenerately into X: if p ~ P M  and (dp /d i ) ( i )~0 ,  then 
[dA(p)/di](i) #0 .  

The smoothness for the map h is straightforward: 

G5. For any smooth family fit: U ~ P ,  the map hfi: U---,G is smooth. 

The proof strategy only for the remainder of the reconstruction will be 
sketched, as the work is not yet complete, and a more thorough exposition 
would be premature. The main points to show are: 

1. A can be used to construct "Riemann normal coordinates" around 
any point x~X.  For example, around the point ,, the family p: M ~ P M ,  
p(m)[i] = im (i.e,, radial straight lines) should, in some neighborhood of the 
origin, map invertibly to X. The derivative at the origin is nonzero on 
account of the nondegeneracy condition in G4. 

2. A is a 1-1 mapping of P M  to PX. 
3. For paths p, q~PM,  p is thinly equivalent to q if and only if A(p) is 

thinly equivalent to A(q). 
4. The mapping h can, by virtue of the 1-1 correspondence of P and 

D_.X, be regarded as a holonomy mapping I'bY~G. The axioms H1-H3 are 
established by the points above. 

5. The reconstruction theorem is applied to h. The construction is the 
same as that given by the relation R directly on P M  x G. The resulting G- 
principal bundle needs to be interpreted as the frame bundle of X. At a point 
e~ E, the frame is defined as the mapping 

Oc: M ~  T.(c)X 

dp dA(p) (1) 
g~;i (1)-~ di 

for any point (p, g ) E P M  x G which is in the equivalence class of c. One has 
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to show that this mapping agrees on all the different possible paths p, and 
is linear. This is the same as the problem of defining a connection in the 
Yang-Mills theory, and one should be able to use the Yang-Mills result by 
defining the affine holonomy mapping D.X~A, and constructing its bundle 
(which should be the isometric affine frame bundle) and connection. Its 
connection splits into two parts, the Lorentz connection, and the inverse of 
the map 0. 

The nondegenerateness of 0, which is essential to the notion of a frame, 
follows directly from the nondegenerate property in G4. 

6. Finally, the metric on X follows once the frames are established, 
essentially from the fact that the reconstructed bundle contains only a subset 
of frames, the orthonormal ones. The map 0c is used to map the metric on 
the Minkowski space M to the tangent space at x on X. These metrics will 
agree for all the points c in the fiber above x, because the frames are all 
related by Lorentz transformations in M. 

4. THE FIELD EQUATIONS OF GRAVITY 

4.1. Introduction 

In previous sections, the holonomy description gave rise to a gravi- 
tational field with a connection that was naturally metric-compatible, but 
the fields were otherwise arbitrary. In other words, the Einstein field equation 
was not imposed, and the torsion was also arbitrary. The aim of this section 
is to demonstrate a form of the field equations which is naturally suited to 
the holonomy scheme. There are really two field equations, the Einstein 
equation and the torsion equation, and, as we shall see, they are naturally 
paired as the linear momentum field equation and the angular momentum 
field equation. 

So far, the holonomy description has proceeded with the minimal use 
of tensors; there are displacement vectors and Lorentz group elements, but 
nothing more complicated than this. The plethora of different tensor types 
which usually accompanies general relativity is rather a foreign element in 
this approach. So, to continue in this spirit, maximal use will be made of 
differential forms in expressing the equations of motion. To give an example, 
the energy-momentum tensor pab is best expressed as a vector-valued three- 
form pa=pabl~bcdeeCA edA e e, where e is the unit vector-value one-form. This 
has a more geometric meaning than the former; when integrated with a 
"small" three-surface element (over which the curvature can be ignored) it 
gives the energy-momentum passing through that surface. It also has the 
technical advantage that the covariant exterior derivative can be applied, 
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giving different treatment to vectors and differential forms, when there is 
torsion in general. 

Going further than this, the spirit is to introduce the relevant geometric 
objects over which the differential forms are to be integrated. This has been 
pursued to its logical conclusion already in previous sections as far as the 
connection one-form is concerned: one-forms are integrated along paths, 
and the result is a theory formulated in terms of functions on path space. 
The strategy here is then to introduce "small" three-surface elements and 
their bounding two-spheres over which the momenta are integrated. Precise 
results can be expressed in terms of the limit of a family of spheres which 
shrink to a point in a smooth way. 

4.2. Field Equations 

The two equations of motion are (Kibble, 1961; Sciama, 1962) 

1 l.~ab ~, .  A eC g, abcd=Pd (energy-momentum density) 

1 .ca A e b ~abcd = Scd (spin density) 

where R is the curvature two-form and r the torsion two-form. The two 
quantities on the left-hand sides are the Einstein tensor and the modified 
torsion tensor. When the right-hand sides are set to zero the equations 
become the vacuum Einstein equation and the equation r = 0, expressing the 
connection form in terms of the metric. 

Let us examine the Einstein equation first. What is needed is a precise 
expression of the idea that over a sufficiently "small" three-surface V, so 
that the curvature over its extent can be neglected, the integral of the Einstein 
tensor over V is equal to the matter energy-momentum passing through the 
surface V, 

�89 ~ R ab/~ ece~bcd.~energy-momentum through V 
, )  V 

To perform this integral properly, what is needed is a notion of parallel 
transport for the vector index of the integrand. The idea is that V is 
"sufficiently small" for any reasonable parallel transport of the vectors to 
one point in V to produce a result differing only by corrections of higher 
order in the size of V from the result of the integration itself. Suppose that 
V is topologically a three-disk, so that the boundary ~3 V is a topological two- 
sphere. Then V can be filled with a family of curves (a "spray") which each 
start at the same point v in the interior of V and end at the different points 
of t3 V. then the vector in the integrand at a point u ~ V is parallel transported 
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along the unique path which 
at this is that a special type 
connection form o~ is zero in 
gration is performed in this 
directions, and so a~= 0. 

links it with v. An alternative way of  looking 
of gauge has been picked, that in which the 
the directions along the curves, and the inte- 
gauge. At the point v, curves radiate in all 

The quantity I (V)  = �89 Sv R~bA ecgabcd' defined by the aid of a particular 
spray of  curves from v, is the same up to third order in a small parameter s, 
for any spray of  curves. What this means precisely is that if one has a smooth 
one-parameter family of  three-disks V(s) shrinking to the point v at s = 0 
(i.e., a smooth map to M of  a regular cone whose base is a standard three- 
disk), and one attaches two different smooth families of  sprays to these, then 
the two different integrals I(V(s)) agree up to third order in s at s = 0. Clearly, 
since the integration is over a three-dimensional region, this just follows 
from the equality of the integrands at the point v. Note that for this result 
it is important that V(s) is parametrized smoothly, as defined above. 

This formula is not particularly exciting as it stands, but can be rewritten 
in an interesting way. The same spray of  curves can be developed into 
Minkowski space M. Suppose that the manifold has a basepoin t . ,  and that 
c is an arbitrary curve which connects �9 to v. The paths that were chosen in 
V are connected to c and then developed into M, the tangent space of the 
point . .  Then the region Vcan be mapped into M by mapping a point us  V 
to the endpoint of the development of the path leading to u. 

Let us formalize this briefly. We started with a family of  paths 
~: V~PoX (PoX is the path space of  the manifold X, based at v). These 
ended at the point in question: ~(u, 1)=u.  The map x: V ~ M  was defined 
by x(u)= 6(~t(u) o c)(1), where 6 is the development map P , X ~ P M .  

Again, one can regard this as a special type of coordinate gauge fixing, 
x providing a particular type of  coordinate chart, such that dx = e for vectors 
along the family of  curves. The point is that co and x obey 

co(v) = O, dx(v) = e 

so that the "coordinates" are very particular ones: they are adapted to the 
geometry of  the manifold at v. 

The local conservation of  energy-momentum dp"(v) = 0 (which actually 
only holds if the torsion or curvature vanishes at v) suggests that the integral 
over V can be rewritten as a boundary term. In fact, the relevant expression 
is 

1E'abcd It? V Rab xc ~-- " V ~ Pd 
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which again holds up to third order. This formula is true because, using 
Stokes' formula, the integrand at v is equal to �89 times 

d(RabxC)(v) = (dRabx C + R ab A eC)(v) 

At the point v, exterior differentiation d is equivalent to exterior covariant 
differentiation (D), because co(v)= 0. Hence the Bianchi identity gives d R  = 
0. The formula is known as Cartan's moment of rotation (Cartan, 1922; 
Misner et  al., 1972). It relates the energy-momentum threading through the 
two-sphere a V to the integral of the "moment of rotation" R[abx c]. So this 
is our first field equation, that the integral formula holds to third order for 
any smooth family of two-spheres which shrinks smoothly to a point v e X .  
It is perhaps a highly inefficient way of stating the Einstein equation, but 
physically it gives a very appealing picture. Note that, in contrast to the 
conservation law Dpa=O ,  which only holds when r=0,  the integral 
expression gives the correct formula with torsion. 

The formula for Cartan's moment of rotation found an application to 
Regge's theory of discrete general relativity (Regge, 1961), which for my 
part, was a result of considering the formulas here (Barrett, 1985, 1986, 
1987, 1988; Miller, 1986). Regge's equations of motion can be understood 
as a discrete version of the two-sphere expression which rather surprisingly 
turns out to be an exact formula, rather than approximate to third order as 
it is here. 

In Cartan's time the relativists did not think of the torsion equation as 
a second field equation, although Cartan and other mathematicians worked 
out the mathematical theory of torsion. The relativists just set ~-= 0, and 
probably did not ask for the same sort of physical picture that Cartan's 
moment of rotation gives to the Einstein equation. As far as I am aware, 
the presentation of the torsion equation as a "small two-sphere" integral 
expression is a new idea. 

The modified torsion tensor, which forms the left-hand side of the tor- 
sion equation, is not covariantly conserved, since it is equal only to the 
matter spin density and not the total angular momentum. However, by using 
the idea that the total angular momentum should be covariantly conserved, 
one can arrive at the following formula: If we set 

Mab = S a b  -]- x[aPb] 

where the quantities S, p, and x ( v )  are evaluated at v, then 

1 cd 2 1 c d 
M . b = d ( E ~ , b c d ( ~ R  X . - k ~ C  x ))(~) 

where C" is the translational curvature C a ( u ) = R a b x b  - r a. The C a is the 
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translational part of the affine holonomy for a "small" loop at the end of 
the curve e. 

The corresponding integral expression is 

; M a b  ~ ~abcd gl~ X "1"- ~l.~ X 

V 

with the equality again holding to third order. The two terms in the integrand 
might be called the first moment of translational curvature and a second 
moment of (rotational) curvature. The equation states that the integral of 
these two moments of curvature over a small two-sphere t? V is equal to the 
matter angular momentum passing through the two-sphere. 

This equation can be regarded as the second field equation because if the 
first field equation holds, one can subtract the "orbital" angular momentum 
X(V[a)Pb] from the total angular momentum Mab, and the result is the equa- 
tion relating the modified torsion tensor to the spin density. 

The origin dependence of the total angular momentum Mab is what one 
would expect. If the angular momentum is measured from a different origin, 
or indeed the same origin but connected to it by a different path c', then the 
coordinate of v changes by x ' - x ,  and the angular momentum changes by 
M '  - M = (x'  - X[a)Pb]. In addition, if there is a change of frame, all the vector 
indices are rotated by the Lorentz transformation. The linear momentum 
was independent of change of origin, but behaved as a vector under a change 
of frame. 

Due to the origin dependence of M~b, it is possible to sort out the 
intrinsic spin of the matter from the orbital angular momentum, thus resolv- 
ing the ambiguity noted by Kibble (1961). Roughly speaking, the spin part 
of the angular momentum is the part that cannot be transformed away by 
the change of origin mentioned above. The details of how this works in 
ordinary flat space is contained in Penrose and MacCullum (1973). 

The two small-sphere expressions for linear and angular momenta pre- 
sented here have appeared previously in different contexts, due to the fact 
that the small-sphere limit is the same as the weak-field limit (Penrose, 1982). 
The expressions, for zero torsion, therefore agree with the twistor expressions 
for quasilocal momenta (Penrose, 1982; Kelly et al., 1986). 

A suitable representation of the equations of motion has been achieved 
with the aid of the notion of gravitational holonomy, particularly the use of 
development. The linear and angular momenta of matter passing through 
small two-spheres are equated with integrals of moments of the two curva- 
tures, rotational and translational. All these quantities have fairly immediate 
significance in the holonomy description. The curvatures are essentially the 
holonomy elements for small loops, as explained in Section 2.5. The other 
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quantity is the displacement vector x defined using the notion of develop- 
ment. Thus, the equations are constraints on the quantities of holonomy 
and development of paths in a fairly direct way. 
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